
Securing Mobile Agents Through Evaluation of Encrypted Functions∗

Hyungjick Lee†

Connectivity Lab., Digital Media R&D Center
Samsung Electronics Co., Ltd

416, Maetan-3Dong, Paldal-Gu,
Suwon City, Gyeonggi-Do, South Korea

hyungjick.lee@samsung.com

Jim Alves-Foss and Scott Harrison
Center for Secure and Dependable Software

Computer Science Department
University of Idaho
Moscow, ID 83843

{jimaf, harrison}@cs.uidaho.edu

Abstract

The mobile agent technology is a new paradigm of dis-
tributed computing that can replace the conventional
client-server model. However, it has not become popular
due to some problems such as security. The fact that com-
puters have complete control over all the programs makes
it very hard to protect mobile agents from untrusted hosts.
In this paper we propose a security approach for mobile
agents, which protects mobile agents from malicious hosts.
Our new approach prevents privacy attacks and integrity
attacks to mobile agents from malicious hosts.

Many people have proposed good security approaches,
but most of them do not prevent both integrity and privacy
attacks. We review a few security approaches for mobile
agents, discuss their weaknesses and strengths, and pro-
pose a new approach that can fix many of their problems.
One interesting approach is mobile cryptography proposed
by Sander and Tschudin. It encrypts mobile agents and
the encrypted mobile agents are executable without de-
cryption. Implementing mobile cryptography requires an
interesting types of cryptosystem called homomorphic en-
cryption scheme, which allows direct computation on en-
crypted data, but none of such a homomorphic encryption
scheme is known yet.

Our new security approach is an extension of mobile
cryptography, and it removes many problems found in the
original idea of mobile cryptography while preserving most
of the benefits. Although the original idea of mobile cryp-
tography allowed direct computations without decryptions
on encrypted mobile agents, it did not provide any practi-
cal ways of implementation due to the fact that no homo-
morphic encryption schemes are found for their approach.

∗This research was supported by research grants from
DARPA under the contract number DMA972− 00− 1− 0001
and Air Force Research Laboratory under the contract num-
ber F30602− 02− 1− 0178.

†Corresponding Author: TEL +82 31 200 3354, FAX +82
31 200 3350

Our approach provides a practical idea for implementing
mobile cryptography by suggesting a hybrid method that
mixes a function composition technique and a homomor-
phic encryption scheme that we have found. Like the orig-
inal mobile cryptography, our approach will encrypt both
code and data including state information in a way that
enables direct computation on encrypted data without de-
cryption. We believe that our approach is a viable and
practical means to address security problems such as in-
tegrity and privacy attacks to mobile agents.

Keywords: Mobile Agent System, Security, Encryption,
Privacy, Homomorphism

1 Introduction

An agent-based computer system is a distributed
computing environment in which mobile au-
tonomous processes called mobile agents operate on
behalf of users. The autonomous agent concept
has been proposed for a variety of applications on
large, heterogeneous, distributed systems (e.g., the
Internet) [5]. These applications include a special-
ized search of a large free-text database [3], middle-
ware services such as an active mail system, elec-
tronic malls for shopping, and updated networking
devices. Mobile agent systems are purported to
have many advantages over traditional distributed
computing environments. They require less network
bandwidth, increase asynchrony among clients and
servers, dynamically update server interfaces and in-
troduce concurrency [4].

Mobile agents have existed for some time, but
problems with security have limited their popular-
ity. Mobile agents are composed of code, data, and
state. Agents migrate from one host to another tak-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Securing Mobile Agents Through Evaluation of Encrypted Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ing the code, data and state with them. The state
information allows the agent to continue execution
from the point where it was before it left in the pre-
vious host. For example, a mobile agent could be
dispatched from the home site with the task of buy-
ing an airplane ticket for its owner. The agent would
visit all the known hosts of airline companies, one af-
ter another, to search for the most reasonably priced
ticket, and then purchase one for its owner. Each
time the agent hops to the next host, it summarizes
the current state, execution pointer on the current
state, etc., so that it can start searching for reason-
able tickets on the next host. The state of the agent
will contain a set of possible tickets to be considered
for purchase. When the agent has finished its search,
it may return to the host where it found the cheapest
or best ticket and purchase it.

While agents roam around the Internet, they are
exposed to many threats and may also be a source of
threat to others. Sander and Tschudin present two
types of security problems that must be solved [13].
The first is host protection against hostile agents.
The second is agent protection against hostile hosts.
Many techniques have been developed for the first
kind of problem, such as access control, password
protections, and sand boxes, but the second prob-
lem appears to be difficult to solve. It is generally
believed that the execution environment (host) has
full control over executing programs; thus, protect-
ing a mobile agent from malicious hosts is difficult to
achieve unless some tamper-proof hardware is used.
For example, Yee proposed an approach that uses
a secure coprocessor that executes critical computa-
tions and stores critical information in secure reg-
isters [14]. In this paper, we propose a security
approach to protect mobile agents from untrusted
hosts.

In this paper, we focus on extending the mobile
cryptography approach, proposed by Sander and
Tschudin [11, 13, 12], in terms of privacy and in-
tegrity, and explore its usefulness and effectiveness
in protecting mobile agents (We discuss the mo-
bile cryptography in Section 2). To extend mo-
bile cryptography, we will consider composite func-
tions and additive-multiplicative homomorphism to
encrypt mobile agents. As the contribution of this
research, the encrypted mobile agent will be able to
run on any host without decryption. The encrypted
mobile agent will generate encrypted results, which

will be decrypted by the agent owner. This will im-
prove the overall security of the mobile agents.

In the remainder of this paper, we expand the idea
of mobile cryptography. In Section 2 we provide an
overview of some related works. In Section 3 we in-
troduce the idea of homomorphic encryption scheme
and function composition. In Section 4 our new ap-
proach for mobile agent security is discussed. In Sec-
tion 5 we discuss the details of each component of
our approach. In Section 6 we analyze our approach,
and discuss the weaknesses and strengths of our ap-
proach. In Sections 7 and 8 we briefly give conclusion
and some future works for our approach.

2 Related Work

Mobile agent protection is difficult due to a host’s
complete control over executing programs. While
many approaches have been proposed to defend mo-
bile agents from untrusted hosts, none adequately
addresses every aspect of security. We survey four
proposed approaches for the problem of mobile agent
protection. The four approaches are chosen because
each approach is very uniquely implemented and
has strengths that other approaches do not have;
we choose social control approach because it mim-
ics our real society where badly behaved merchants
are forced to go out of business. Partial Result Au-
thentication Code approach is chosen due to the fact
that it can protect results from mobile agents. En-
vironmental key generation approaches are chosen
because it uses cryptographic support for privacy at-
tack prevention. Mobile cryptography approaches is
chosen because it tries to scramble code and data
together.

2.1 Social Control

Rasmusson and Jansson propose an approach that
utilizes the reputation of each host to improve the se-
curity of a mobile agent system [8]. Their approach
require a dedicated reputation agent and machine
for building and maintaining the reputation list of
all the participating hosts. The reputation of each
host changes throughout its life span depending on
its behavior. Although this approach does not re-
quire any other external security authority, all the
participants join in punishing malicious hosts by ad-

2

justing their reputation evaluation as determined by
agents.

This social control has advantages over other ap-
proaches. First, social control is a “soft” approach
that accepts malicious hosts but identifies them and
prevents them from causing more problems [8]. The
second advantage is that it provides modest general
coverage for mobile agents. Third, once security
breach detection mechanisms are determined, it is
relatively easy to implement.

However, social control also has many disadvan-
tages. First, to punish a malicious host, we need
to detect attacks; however, Rasmusson and Jansson
provide no clear method/algorithm for detecting at-
tacks on mobile agents [8]. It would be a complex
and time-consuming process to develop detection al-
gorithms for different kinds of attack models. Sec-
ond, this approach requires a dedicated agent and
machine that could be a potential point of failure.
Once the security for any two of these is breached,
a safe mobile agent environment cannot be guaran-
teed. Third, since the reputation record for all the
hosts must be maintained, a storage problem is cre-
ated as the growing number of hosts generates large
numbers of reputation records. Fourth, reputation is
based on host identifiers; if an intruder can masquer-
ade as an acceptable host, there are no additional
safeguards. Fifth, This approach is slow in changes
and responses to new malicious hosts.

2.2 Partial Result Authentication Codes
(PRAC)

Yee proposed an approach, Partial Result Authenti-
cation Codes (PRAC), which protects partial result
with a Message Authentication Code (MAC) com-
puted on partial results by using a secret key [15].
The agent originator (owner) and mobile agent are
given a secret key for each host to be visited. The
current secret key used to encrypt the partial result
is destroyed before the agent migrates to the next
host. Destroying secret keys before agent migration
ensures that the previous partial results are secure
and intact. Since the agent originator maintains the
secret keys, the partial results can be verified on the
originator’s home site.

PRACs also provide a reasonable protection to
mobile agent systems by focusing primarily on in-
tegrity issues in the mobile agent system. PRACs

have several positive aspects. First, PRACs improve
the integrity of partial results, because the secret
key(s) used to create PRACs are destroyed before
an agent’s migration. Second, unless secret keys
are compromised, the agent originator can pinpoint
which malicious host attempted an attack through
comparing the PRAC generated by the malicious
host to the PRAC generated by the correct secret key
stored in the agent originator. The third advantage
of the PRAC approach is that it guarantees forward
integrity, which states that even though the current
host is malicious, all the previous partial results are
safe, because the secret key for each previous host is
destroyed before an agent’s migration.

There are negative aspects to the PRAC approach
also. First, it provides protection to partial results
for mobile agents, but not to agent code and other
aspects of the agent. Second, if the secret keys are
compromised by malicious hosts, then those ma-
licious hosts can read and modify any partial re-
sults. Third, although secret keys are destroyed be-
fore agent migration, it does not ensure that future
results are secure, if a host is ever revisited by an
agent.

2.3 Environmental Key Generation

The next approach, Environmental Key Generation
proposed by Riordan and Schneier, generates the de-
cryption key for an agent’s encrypted code and data
by searching through the execution environment [9].
The agent originator sends a cipher-text message
(i.e., encrypted data and instructions) and a method
for searching the environment for the data that is re-
quired to generate the decryption key. If the proper
environmental data is found through the given data
channel, then the key is generated to decrypt the
encrypted mobile agent.

Environmental key generation has many strengths
over other approaches. First, environmental key gen-
eration improves the integrity and privacy for agent
code and data, which are both encrypted by the
agent. Second, the decryption key is kept secure.
The programmer can choose any kind of data chan-
nel that best suits the application such as a file sys-
tem, Internet newsgroup, or e-mail. Even though the
attacker may know which data channel the agent is
searching, he or she must know which data portion of
the data channel is required for the key generation.

3

The environmental key generation can protect the
code and data from integrity and privacy attacks,
but this approach also has weaknesses. First, the
environmental key generation approach is vulnera-
ble to group conspiracy attack. Second, data channel
protection is another security issue. Third, although
this approach can improve the integrity and the pri-
vacy for its code and data, it does not provide any
protection for results. Fourth, once the code and
data are decrypted, they can be attacked by a mali-
cious host who can insert his or her own decrypting
routine and data channel for new hosts.

2.4 Mobile Cryptography

Mobile cryptography, originally proposed by Sander
and Tschudin [11, 13], is an approach that uses cryp-
tographic techniques. The basic concept of this ap-
proach is as follows: Alice has a function f() and
wants to run this function f() on Bob’s computer
with Bob’s input x. Alice does not want Bob to know
details of the function f(); and the result of the func-
tion f() must not be revealed to Bob. To accomplish
this, Alice carefully encrypts the function f() into a
new executable function g() and transmits it to Bob.
Since the function f() is encrypted as g(), Bob does
not know the details of the function f(). Bob runs
g() without decryption and generates results that are
also encrypted. Bob sends the results back to Alice.
Alice can decrypt the results to obtain the true re-
sults of f(). Sander and Tschudin argue that an ad-
ditively, multiplicatively, and mixed-multiplicatively
homomorphic encryption can implement the mobile
cryptography which generates an encrypted mobile
agent that will run without the decryption and gen-
erates the encrypted result.

Mobile cryptography offers many advantages over
other approaches. First, it provides protection
against privacy attacks and integrity attacks, while
most of other approaches achieve protection for only
one kind of attack. Since the agent is encrypted, the
code, data and execution flow are protected from
read attacks and modification attacks. Second, the
partial results are also protected from read attacks
and modification attacks since only the agent owner
who encrypted the agent can decrypt the results.
Third, there is no need to set up a secure channel to
transmit agents because the agents are already en-
crypted. Fourth, the most powerful advantage of this

approach is that the encrypted agent is executable
and the partial results generated by the agent on any
host are already encrypted. Only the agent owner
can decrypt the results after the agent returns home.

Mobile cryptography provides the widest range
of protection but also embodies some weaknesses.
First, the most serious problem is that there are
no known general encryption schemes for arbitrary
functions. Sander and Tschudin proved that poly-
nomial functions and rational functions can be en-
crypted in this way [13]. Second, there is also a small
delay in agent creation and execution due to the en-
cryption process. Third, if multiple hosts must par-
ticipate in agent execution, then this approach is not
useful because only the agent owner can encrypt and
decrypt the results. This causes a problem in sharing
information among multiple hosts involved in agent
execution. Fourth, the encrypted agent may not be
optimized. Unoptimized agents will show slow per-
formance and consume a great amount of resources.
Fifth, this approach provides a wide range of protec-
tion to mobile agents, but there are still some types
of attacks that cannot be prevented, such as denial
of service, agent hijacking, and random modification
attacks.

3 Evaluating Encrypted Func-
tions

Our approach is built on the bases of three-address
code, homomorphic encryption scheme (HES), and
function composition (FnC) technique. In this sec-
tion, we describe three-address code, function com-
position (FnC) and homomorphic encryption scheme
(HES) to prepare for our new approach.

3.1 Three-Address Code

Many computer languages use compilers to translate
source code into executable target code. Compilers
go through several phases; after the lexical, syntax
and semantic analysis, some compilers, though not
all, generate an explicit intermediate representation,
before generating target code [1]. The three-address
code is one of the forms of intermediate representa-
tions.

Three-address code is a sequence of the statements
of the form x := y op z, where x, y, and z are names,
constants or compiler-generated temporaries; op

4

stands for any operator, such as a fixed- or floating-
point arithmetic operator, or a logical operator on
boolean-valued data. Thus a source language expres-
sion like x+y∗z might be translated into a sequence:

t1 := y ∗ z
t2 := x + t1

where t1 and t2 are compiler generated temporary
names [1]. In general, three-address code contains
three addresses, where there are two addresses for
the operands and one for the result.

3.2 Homomorphic Encryption Scheme
(HES)

Rivest, Adleman and Dertouzos pointed out that the
limitation of an encryption system is that an infor-
mation system can only store and retrieve encrypted
data for users. Further operations on data require
decryption, and once the data is decrypted, it is not
secure any more. Thus, the researchers proposed a
new idea of cryptosystem that enables direct compu-
tation on encrypted data without decryption, which
they called privacy homomorphism [10]. Later,
Sander and Tschudin defined additive-multiplicative
homomorphism, which is a kind of privacy homo-
morphism [13, 12]. Additive-Multiplicative homo-
morphism ensures that the computation result on
two encrypted values is exactly the same as the en-
crypted result of the same computation on two unen-
crypted values. Sander and Tschudin’s mobile cryp-
tography uses HES for its implementation, but there
are some drawbacks. First, no single cryptosystem
is found to be additively, multiplicatively and mixed
multiplicatively homomorphic. Second, only some
limited classes of functions (polynomial and ratio-
nal functions) are proved to be compatible with the
HES [13, 12]. Here, we describe the properties of
homomorphic encryption scheme that we need for
securing mobile agents from the work of Sander and
Tschudin [13, 12]:

Let R and S be rings. We call an (en-
cryption) function E : R → S

• additively homomorphic if there is an
efficient algorithm PLUS to compute
E(x+y) from E(x) and E(y) that does
not reveal x and y,

• multiplicatively homomorphic if there
is an efficient algorithm MULT to
compute E(xy) from E(x) and E(y)
that does not reveal x and y,

• mixed-multiplicatively homomorphic
if there is an efficient algorithm
MIXED-MULT to compute E(xy)
from E(x) and y that does not reveal
x.

The homomorphic encryption scheme that meets the
three properties allow only two types of operators:
addition and multiplication. One thing to note is
that there is one-to-many relationship, which im-
plies that a single plaintext message, x, can have
multiple ciphertext messages of E(x) (i.e., although
E1(x) 6= E2(x), D(E1(x)) = D(E2(x)) is true for
a plaintext message x). Another point to note is
that there should be only a few elements (only one
element is desirable) that satisfies the last property
(mixed-multiplicativity), otherwise the last property
and the second property yield an anomaly, y = E(y).
Thus, in integers, only one integer (a multiplicative
identity, x = 1) should satisfy the last property,
E(xy) = E(x)y, to avoid the anomaly.

3.3 Function Composition(FnC)

Sander and Tschudin argue that evaluating en-
crypted functions (EEF) can be accomplished, not
only by an additive and multiplicative homomor-
phism, but also by mathematical analogues such as
composite functions [11]:

Assume Alice wants to evaluate a linear
map A at Bob’s input x on Bob’s computer.
She does not want to reveal A to Bob, so
she picks at random an invertible matrix
S, computes B := SA and sends B to Bob.
Bob computes y := Bx and sends y back
to Alice. Alice computes S−1y and obtains
the result Ax without having disclosed A
to Bob.

We define f(x) as a resultant composite func-
tion, if it is derived by taking the output of a func-
tion, h(x), and using as the input to another func-
tion, g(x). Mathematically, this is represented by
f(x) = g ◦ h or f(x) = g(h(x)), where the function,
h(x), is a hidden (original) function. The function

5

h f=g h

P(f)

g-1(f(x))h(x)

P(f(x))

Alice Bob

Figure 1: Composite Function

(agent) owner must choose an invertible function,
g(x), to create a composite function f(x). The func-
tion, f(x), is a different function (encrypted func-
tions) from h(x); thus, privacy and integrity require-
ments are preserved. The result of this composite
function, f(x), is also encrypted; malicious hosts do
not know the result. The function (agent) owner re-
trieves the result from the encrypted result by using
the inverse function of g(x).

In Figure 1, Alice is the agent (function) owner
and has a function, h(x), that she wants to evalu-
ate on Bob’s computer with Bob’s input x, but she
does not want to reveal anything about her func-
tion. Alice chooses an invertible function, g(x), cre-
ates a composite function, f(x), and sends it to Bob.
Bob does the computation with his input, x, and
sends the result back to Alice. Bob cannot determine
the function, h(x), because what he sees is only the
composite function f(x). Only Alice can retrieve
the real result of h(x) from the result of f(x) by
plugging f(x) into the inverse function of g(x)(i.e.,
h(x) = g−1(f(x))).

4 New Approach

Ours is a hybrid approach which combines HES
and FnC. A special program called Mobile Agent
Encryption (MAE) will intercept the three-address
code from compilers, and apply HES to encrypt the
operands of three-address code and FnC to encrypt
codes. In other words, MAE will encrypt the sensi-
tive data, such as credit card number and personal

information, stored in the operands of three-address
code, and scramble the code of the mobile agent
to confuse untrusted hosts. Our approach inher-
its most of the strengths of mobile cryptography;
ours encrypt mobile agents, and the encrypted mo-
bile agents are executable without decryption. The
partial result is also protected by our approach. Fur-
thermore, our approach removes some critical prob-
lems found in the original idea of mobile cryptogra-
phy by Sander and Tschudin (this is discussed in
analysis section). Implementing our approach re-
quires assumptions and there are some limitation
stemming from the assumption. Before, we present
our approach, we state the assumptions and the
goals of our approach.

4.1 Goals of Our Approach

The first goal of our approach is to enhance the pri-
vacy so that malicious hosts are not be able to read
the contents of important data. The next goal is
to enhance the integrity of the agent. Generally,
hosts running programs have complete control over
the programs; thus malicious hosts can read the mo-
bile agent’s code, analyze the flow of control, and
modify the mobile agent. Because this will disrupt
the normal execution of the mobile agent, the in-
tegrity of the result generated by the agent cannot be
guaranteed. Another goal is encrypting the mobile
agent carefully using an additive-multiplicative ho-
momorphic encryption scheme so that the encrypted
mobile agent is executable without decryption. An-
other goal is to protect the result generated from

6

the encrypted mobile agent. The results also suffer
from the same security problems as the mobile agent.
Without the protection of the result, malicious hosts
can read and modify the result for their own bene-
fits. The last goal is that no one except the agent
owner must be able to decrypt the agent and result.

4.2 Assumptions for New Approach

Our approach offers broader protection to mobile
agents than other approaches reviewed in Section 2.
Implementing our approach requires some assump-
tions like the original mobile cryptography. The first
assumption we need is that the HES is based on
ring theory; thus we assume that the transforma-
tion (encryption/decryption) of elements from one
set into the other set is additively and multiplica-
tively homomorphic. The second assumption is that
we use only integers, due to the the fact our HES
is based on ring theory. The third assumption is
that only addition and multiplication are used in
the agent code. Again, this is because we are using
an additive-multiplicative homomorphic encryption
scheme. The fourth assumption is that the control
structures of the agent code will not be encrypted
by the composite function technique, because the
control structures such as if-statements have log-
ical expressions with other types of operators such
as logical operators, boolean operator and equality
operators.

4.3 Encryption

Our new approach extends Sander and Tschudin’s
idea of mobile cryptography and overcomes the prob-
lems of their approach by proposing a practical way
of implementing mobile cryptography. The new
approach encrypts the data from the agent, then
encrypts the three-address code representation of
the agent by using the composite function tech-
nique. This implies that the mobile agent is doubly
encrypted, by first encrypting the data and state
information found in the three-address code with
the additive-multiplicative homomorphic encryption
scheme, and then by encrypting the three-address
code (i.e., the code portion of the mobile agent) with
the composite function technique. The overall work-
flow of the approach is a four-step process as in Fig-
ure 2:

• Step 1 The operands of the three-address
code are encrypted by using an additive-
multiplicative homomorphic encryption scheme.

• Step 2 The operand dependency prob-
lem (data encrypted by HES should not
be encrypted again) caused by the additive-
multiplicative homomorphic encryption scheme
is removed.

• Step 3 Three-address code statement is en-
crypted by using the function composition tech-
nique.

• Step 4 The three-address code dependency
problem caused by the function composition
technique is resolved.

As shown in Figure 2, MAE grabs the plaintext
three-address code from the compiler and analyzes
the code for the encryption of sensitive data and
state information of the mobile agent by using HES.
After the first encryption, MAE encrypts the three-
address code by using the function composition tech-
nique. While performing the first and second encryp-
tions, MAE encounters the double encryption prob-
lem for the operands and the codes (statements).
This will lead to the incorrect encryption of the mo-
bile agents, thus MAE carefully looks for all the
operands and statements for the double encryption,
removing the double encryption, if any. The double
encryption problem for each component (HES and
FnC) is addressed in Section 5. MAE will generate
the encrypted three-address code, which performs
the same task as the plaintext three-address code,
and makes it difficult for malicious hosts to read
and modify the mobile agent code, data and state
information.

4.4 Decryption

The process of decryption, as depicted in Figure 3,
is exactly the reverse of the encryption process. The
agent owner does not need to decrypt the whole
mobile agent; instead only the encrypted result is
decrypted. The result of the computation of any
encrypted mobile agent is automatically encrypted,
and malicious hosts cannot read and understand
the encrypted result as depicted in Figure 3. The
decryption done by the agent owner’s MAE is a
two-pass process, in which the first pass will use

7

Plaintext Three-Address Code

Operand Encryption

Operand Dependency Removable

Code Encryption

Code Dependency Removable

Ciphertext Three-Address Code

MAE

ENCRYPTION (HES)

ENCRYPTION (Function Composition)

HES: Homomorphic Encryption Scheme

Figure 2: Encrypting Mobile Agent

the function composition technique to decrypt the
result and the second pass will use the additive-
multiplicative homomorphic encryption scheme to
fully recover the actual result. The first pass will
simply use the inverse of the function used to cre-
ate the composite function during the encryption.
The second pass uses the secret decryption keys of
the additive-multiplicative homomorphic encryption
scheme to obtain the actual result.

4.5 Overall Idea

Figure 4 depicts the overall process of encryption
and decryption. During the encryption, HES is
used to encrypt data, and a simple secret function,
g(x) = x3 + 1, is used for function composition.
The encrypted mobile agent is released on the In-
ternet, and returns with completed task (result) to
the agent owner. In the decryption the inverse func-
tion, g−1(x) = 3

√
x + 1, is used first, and HES is used

to retrieve the actual result.

5 Components for Our Approach

In this section, we discuss the three organizing com-
ponents of our approach, and provide the working
details of each component.

5.1 HES

One of the biggest problems in mobile cryptography
by Sander and Tschudin is that there is no known
general encryption scheme (i.e., there is no homo-
morphic encryption scheme that meets the three
properties described in Section 3). We suggest
a modified cryptosystem that is additively, mul-
tiplicatively and mixed-multiplicatively homomor-
phic. This modified cryptosystem is based on the
cryptosystem proposed by Ferrer and Joancomart́ı’.
They argue that their cryptosystem is only addi-
tively and multiplicatively homomorphic [2]. We
avoid the details of Ferrer and Joancomart́ı’s cryp-
tosystem and directly discuss our modified cryp-
tosystem.

The modified cryptosystem is similar to the orig-
inal cryptosystem, except that it is more or less a
downsized version so that it can work on the ring.
The modified version uses a large number, n, such
that n = p × q, where p and q are large prime
numbers, and p 6= q. The set Qp is defined as
{a| (a /∈ Zp) ∩ (a ≥ p)}, where the plaintext set
is Zp, and the ciphertext set is Zn. The types of op-
erations defined are addition and multiplication on
Zp. The encryption and decryption algorithms are
as follows:

8

Encrypted Result

Half-Decrypted Result

Fully Decrypted Result

MAE

DECRYPT (Function Composition)

DECRYPT (HES)

HES: Homomorphic Encryption Scheme

Figure 3: Decrypting Mobile Agent

…..

y=a+b

…..

g(x)=x3+1

g-1(x)=

y=E(a)3+3E(a)2E(b)+3E(a)E(b)2+E(b)3+1

result

3 1−x

…..

y=E(a)+E(b)

…..

HES

HES

Decrypt

Encrypt

E(result)

Figure 4: Overall Scheme

Encryption Given x ∈ Zp, pick a random number
a in Qp such that x = a mod p. Compute y =
Ep(x) = a mod n.

Decryption Given y = Ep(x) ∈ Zn. Use the key
p to recover x = Dp(y) = y mod p.

The modified cryptosystem is defined on ring
and it is additively, multiplicatively, and mixed-
multiplicatively homomorphic. It is easy to prove
that the modified cryptosystem works correctly from
Ferrer and Joancomart́ı’s original proof [2].

Theorem 1 (Correctness) For all x ∈ Zp,
Dp(Ep(x)) = x holds true.

Proof. Let y = Ep(x) and a be the random num-
ber used to encrypt the message. From the defini-
tion, y = a mod n, we can deduce a = nk + y for a
constant k. Then the following holds true:

x = a mod p = (pqk + y) mod p = y mod p (1)

¤

The modified version is mixed-multiplicatively ho-
momorphic in terms of the integer 1, as shown in the
following:

Theorem 2 (Mixed-Multiplicativity) For all s
and t in Zp where s = 1, E(s)t = E(st) (i.e.,
E(1)t = E(t)) holds true.

Proof. To prove the mixed-multiplicativity with
s = 1, notice the encryption algorithm is x =
a mod p, y = a mod n for some plaintext x ∈ Zp,
and the decryption algorithm is x = y mod p for
some ciphertext y.
➀ E(1):

1 = a1 mod p, a1 = k1p + 1

y1 = a1 mod n, a1 = k2n + y1

k1p+1 = k2n+y1, y1 = k1p−k2n+1 = (k1−k2q)p+1

Since E(1) = y1, and E(1)t = y1t

y1t = (tk1 − tk2q)p + t

9

implies
t = y1t mod p (2)

➁ E(t):

t = at mod p, at = k3p + t

yt = at mod n, at = k4n + yt

yt = (k3 − k4q)p + t

implies
t = yt mod p (3)

From equations 2 and 3,

y1t mod p = t = yt mod p

This implies that E(1)t = E(t) in terms of modulo
p.
¤
The properties of additivity and multiplicativity
can be proven in a similar manner. The follow-
ing example demonstrates the property of mixed-
multiplicative homomorphism of the modified cryp-
tosystem:

Example Assume p = 101, q = 71, and n =
pq = 7171. Also assume the agent owner pro-
vides E(1) = 203. The malicious host wishes
to encrypt the input, 8. Then, the malicious
host multiplies E(1) by 8, which yields the ci-
phertext, E(8) = 1624. To verify this, choose
A = 15966, 15966 mod 7171 = 1624 (Remem-
ber A ∈ Qn = {A| (A /∈ Zn)∩ (A ≥ n)}). Again
1624 mod 101 = 8.
¤

5.2 Double Encryption Problem

According to our design, MAE takes the plaintext
three-address code to encrypt the operands of each
statement. MAE will scan the three-address code
file, and build the operand table to decide which
operands to encrypt. This is done because if any of
the operands are doubly encrypted, then the correct-
ness of the computation from those operands is not
guaranteed due to the fact D(E(E(x))) 6= D(E(x)).
This fact implies that all the operands found in the
intermediate file of the three-address code must be
registered with MAE and the operands must be
encrypted only once. The operands are variables,
compiler-generated names and constants [1]. If any

of the variables or constants are reused, then they
must not be re-encrypted except when the program
or mobile agent tries to assign a new value into the
operands (i.e., variables).

Assume that we have the following three-address
code:

y := 10
a := y + 2
b := a + y

The operands a, y, 2 and 10 are registered with MAE
and encrypted. However, y in the second line, a :=
y+2, should not be encrypted because it already has
the encrypted value, E(10), from the first line (y :=
10). Again, a in the third line, b := a + y, should
not be re-encrypted, because a hold the encrypted
value, E(y) + E(2), from the second line.

5.2.1 Removing the Problem

Removing this problem requires a through scan
of three-address code by MAE, and MAE builds
an operand table internally, which contains all the
operands including variables, temporaries and con-
stants. Each table entry is associated with a boolean
attribute, which has true if the corresponding en-
try (operand) is encrypted. Otherwise, it has false,
which means that the corresponding entry is not en-
crypted (false is the default). As MAE encrypts
each operand using HES, it assigns true to the cor-
responding entry. This continues until MAE finishes
encrypting the last operand in the three-address
code. While encrypting operands, MAE checks the
operand table to see if the current operand (operand
to encrypt) is already encrypted. If it is encrypted,
then skips the encryption.

The following is an algorithm that removes the
double encryption problem used by MAE. The as-
sumption is that the next input (operand to encrypt)
is fed into MAE from the right-most operand into the
left-most operand (i.e., from y = a+b, read b, a, and
y in the order). This algorithm stops when there is
no more statements to process in the three-address
code.

5.3 FnC

Once MAE is done with encrypting sensitive data
using our additive, multiplicative, and mixed-
multiplicative HES, it prepares for the next encryp-

10

Alg. 1 Algorithm to Remove Doubly Encrypted
Operands
1: while Next Operand do
2: if constant then
3: encrypt and mark with true
4: else if encrypted then
5: if reassignment then
6: re-encrypt and mark with true
7: end if
8: else if right side then
9: encrypt and mark with true

10: else if left side then
11: mark with true
12: end if
13: end while

tion by the function composition. MAE decides a
secret function, g(x), which is x3 + 1 in Figure 5,
and uses it for each line of three-address code to
encrypt. Figure 5 shows how to encrypt each three-
address code line. It encrypted y = a + b into a
different form of code, y = a3 + 3a2b + 3ab2 + b3 + 1.
MAE will replace each original three-address code
with newly encrypted three-address code generated
by random ordering of additions for each term and
multiplications among the terms. This encryption
process will repeat for the remaining three-address
code lines. The decryption requires our MAE to use
the inverse function of g(x). Figure 5 shows the de-
cryption on three-address code, but generally MAE
performs the decryption on some results rather than
the code.

…

y=a+b

…

Three-address code

g(x)=x3+1

Encryption function

Inverse function

g-1(x)=

y=a3+3a2b+3ab2+b3+1

E
n
cry

p
t

Encrypted three-address code

D
ecry

p
t

y=a+b

Decrypted three-address code

3 1−x

Figure 5: Encryption and Decryption Using the
Function Composition

5.3.1 Double Encryption Problem Revisited

The function composition technique can encrypt
each three-address code line and hide the details of
the flow of control from malicious hosts and people,
but encryption by function composition causes an-
other double encryption problem caused by double
encryption on statements (codes). The nature of the
double encryption problem from function composi-
tion is similar to that of the HES, however it must be
resolved differently. A simple example of the double
encryption problem is as follows:

Example Assume a sequence of three-address
codes y = a + b, and z = y ∗ c. Also assume
g(x) = x3 + 1, a = 1, b = 2 and c = 3 for
simplicity. The agent owner is expecting z = 9
from (a+b)∗c = (1+2)∗3, and he/she encrypts
the code with the function composition into
y = a3+3a2b+3ab2+b3+1 and z = y3c3+1 re-
spectively (These are not in three-address code
format, but MAE will convert them into cor-
responding three-address code, which does the
same computation). Using a = 1, b = 2, and
c = 3 onto the encrypted three-address code
yields z = 328510, which is decrypted to z = 69
by the agent owner using the inverse function
of g(x). This is because y is encrypted twice in
the first line (y = a+b) and again in the second
line (z = y ∗ c).

5.4 Our Solution

The solution to double encryption can be found by
observing the behavior of compilers such as LANCE
tool. LANCE is a tool, developed to retarget pro-
grams into different platforms, that generates three-
address code from source codes written in C Lan-
guage [6, 7]. The analysis on the behavior of LANCE
tool is as follows:

Observation 1 LANCE uses original variable
names with unique sequential numbers in three-
address codes as shown in Figure 6. The num-
bers attached to the original variables help dis-
tinguish two variables with the same name.

Observation 2 LANCE tool generates tempo-
raries such as t1, t2, · · · , tn in a way that avoids
the reuse of each temporary as shown in the fol-
lowing example code:

11

t 4 = jaeyong 100 + michelle 101
t 5 = t 4 + tim 102
yong 103 = t 5

LANCE generated the three-address code in
Figure 6 for yong = jaeyong + michelle + tim.
As is clear, LANCE segmented the original ex-
pression with three terms so that each line in the
three-address code can have up to two terms.
Each intermediate result is stored into the tem-
poraries t 4, and t 5.

5.4.1 Dependency-Tree Graph and Encryp-
tion

We have developed a scheme to avoid the double
encryption problem caused by the function compo-
sition. The idea behind this scheme is to build a
dependency-tree graph for three-address codes (i.e.,
a dependency-tree graph for each original variable
found on the left side of any three-address code
statements). The dependency-tree graph is a binary
tree that has the first and second operands in its
branches, an operator in the parent node, and an
original variable in the root node. For each origi-
nal variable, MAE builds a dependency-tree graph
that is located on the left side of any three-address
codes (i.e., y in y = a + b). Since there are seven
original variables on the left side of the expression in
Figure 6, MAE will generate seven dependency-tree
graphs. Figure 7 shows a dependency-tree graph for
the original variable, yong 103.

yong_103

+ (t6)

+ (t5) + tim_102

jaeyong_100_2 + michelle_101

10000 + (t1)

Jaeyong_100_1 + lee_98

?

2 10

Figure 7: Dependency Graph

From Figure 7, it is clear that the leaf node al-
ways has a value corresponding to a source code
variable. Sometimes the leaf nodes will have
non-determined values (represented by a question
mark), which means that the values are provided
by untrusted hosts during run-time. From the
dependency-tree graph in Figure 7, an expression
(jaeyong 100 1+ jaeyong 100 2+ lee 98+ tim 102)
is constructed. In the dependency-tree graph of
Figure 7, one variable, jaeyong 100 appears twice
in two different nodes. One has an older value,
2, while the other has a newer value, 10000. To
represent this situation, MAE modifies the variable
names (there are two jaeyong 100’s) by adding a
sequence number at the end, which requires us to
insert extra statements, jaeyong 100 1 = 2 and
jaeyong 100 2 = 10000 shortly before their use.
This can be done without much work through MAE,
while building a dependency-tree graph. To encrypt,
MAE will encrypt (jaeyong 100 1+jaeyong 100 2+
lee 98 + tim 102) to obtain an expanded expres-
sion of (jaeyong 100 1 + jaeyong 100 2 + lee 98 +
tim 102)3 + 1. MAE will remove the three-address
codes that are used to build the current dependency-
tree graph for the variable, yong 103. Newly en-
crypted three-address codes from the expanded ex-
pression will be inserted into the location of the code
yong 103 = t6. To confuse untrusted hosts further,
the order of multiplications in each term will be
randomly reorganized in a way that avoids disrup-
tion of the computation. The order of additions be-
tween two terms will also be randomly reorganized.
Since there are seven original variables in the orig-
inal three-address code, it will create seven blocks
of codes (the number of blocks is not the number
of original variables in the three-address code, but
rather it is the number of the original variables that
exist on the left side of three-address code lines).
While replacing the codes, our new encrypted inter-
mediate code file will have seven blocks of new state-
ments (encrypted), in addition to the statements
that assign static values, and dynamic values into
original variables.

5.5 Case Study

Although encryption on three-address code follow
the general encryption process, there are some cases
that require some consideration.

12

1:

2: /* 1 "LANCEV2" */

3: /* $

4: IR file generated by LANCE V2.0

(compile) on

5: Monday, May 13, 2002 at 12:54:42

6: $ */

7:

8:

9: void main();

10:

11: static char *lance_static_t3 = "%d";

12:

13: void main()

14: {

15: int lee_98;

16: int sung_99;

17: int jaeyong_100;

18: int michelle_101;

19: int tim_102;

20: int yong_103;

21: int t1;

22: int t2;

23: int t4;

24: int t5;

25: int t6;

26:

27:

28: /* 6 "test.c" */

29: /* $ int lee=10, sung=1, jaeyong=2,

michelle, tim, ...g$ */

30:

31: lee_98 = 10;

32: sung_99 = 1;

33: jaeyong_100 = 2;

34:

35: /* 9 "test.c" */

36: /* $ michelle=jaeyong + lee;$ */

37:

38: t1 = jaeyong_100 + lee_98;

39: michelle_101 = t1;

40:

41: /* 11 "test.c" */

42: /* $ yong=lee+sung;$ */

43:

44: t2 = lee_98 + sung_99;

45: yong_103 = t2;

46:

47: /* 14 "test.c" */

48: /* $ jaeyong=10000;$ */

49:

50: jaeyong_100 = 10000;

51:

52: /* 17 "test.c" */

53: /* $ scanf("%d", tim);$ */

54:

55: t4 = scanf(lance_static_t3,tim_102);

56:

57: /* 19 "test.c" */

58: /* $ yong=jaeyong+michelle+tim;$ */

59:

60: t5 = jaeyong_100 + michelle_101;

61: t6 = t5 + tim_102;

62: yong_103 = t6;

63:

64: /* 0 "???" */

65: /* $???$ */

66:

67: return;

68: }

Figure 6: Example of Three-Address Code Generated by LANCE

First of all, line 39 of Figure 6 creates another
dependency-tree graph for michelle 101, which is in-
cluded(as a sub-tree) in the dependency tree graph
of Figure 7. Although it is the same dependency-
tree graph, it must be constructed again for line 39,
and must replace the original set of three-address
codes. This is because MAE does not know which
variable is important. The original variables after
full encryption (HES + FnC) must be available at
any point through the life-time of mobile agent, be-
cause we do not know when we need to use a fully
encrypted variable. For instance, we can print a vari-
able now, and feed it into some other computations
as an input later. Thus, MAE tries to build a de-
pendency tree graph for every original variable, and
replace original codes with encrypted three-address
codes.

MAE builds dependency-tree graphs for original
variables to encrypt the three-address code that is
encrypted by HES. We should note that the encryp-

tion by function composition (FnC) is done indepen-
dently for each dependency-tree graph. We should
also note that a single variable can feed in the very
same value into several independent dependency-tree
graphs. This causes a problem in which the variable
modified in the first dependency-tree graph feeds in
wrong values into the subsequent dependency-tree
graphs. If an original variable is used as an input
in a later block (different dependency-tree graph),
its original value (half-encrypted by HES) must be
saved for the later blocks. Otherwise, it will feed in a
wrong input and generate a wrong result. To prevent
this problem, MAE inserts an extra statement to as-
sign the value of an original variable (half-encrypted
by HES) into a temporary and use this temporary
in the later blocks (different dependency-tree graph).
This insertion of extra code can be done before build-
ing dependency-tree graphs.

Another case to consider is when a new value is
re-assigned to an original variable. In lines 33 and

13

50, new values 2 and 10000 are assigned into the
variable, jaeyong 100, which will lead to two differ-
ent dependency tree graphs, which must be built,
and which must replace each original three-address
code. Although this may appear to be redundant, it
is not, due to the fact that the variable jaeyong 100
with the value 2 can be used before the value, 10000,
is assigned into the variable (for example, a simple
print function printf("%d", jaeyong 100) may be
called before assigning 10000 into the variable).

Another case that must draw our attention is that
an input from malicious hosts should be dealt with
very carefully. The input is usually accompanied
by scanf command in C language. A variable is
passed to scanf as a parameter, and the user input
is stored in the variable. To encrypt the user input in
the variable, our MAE should add some extra codes.
Assuming that the input variable is a, our MAE adds
t1 = a ∗ E(1), which encrypts a and stores the en-
crypted input in a temporary t1 by the definition
of mixed-multiplicativity. The problem is that if we
encrypt this line t1 = a∗E(1) by our secret function,
g(x) = x3+1, then it is possible that malicious hosts
can discover our secret function by looking carefully
at the three-address codes. To prevent this prob-
lem, we define a function named split(first half,
second half), where the parameter first half is
user input. The split function will randomly split
the source input in first half into two halves, and
return them in first half and second half. Our
MAE will multiply E(1) to each half to encrypt
each half, and add the two encrypted halves. Later,
a dependency-tree graph is constructed for this,
and will be encrypted through our function com-
position technique. Since there are two operands,
first half and second half, the expanded expres-
sion from the dependency-tree graph becomes a bit
complicated and can gain some time to confuse ma-
licious hosts.

The next case involves simple assignment state-
ments with a value on the right side of three-address
codes as shown in lines 31, 32, and 33. Although
there are no computations involved, the encrypt-
ing function, g(x), will encrypt these simple assign-
ments, and replace them with encrypted new three-
address codes. Each line (31, 32, and 33) will build
its own dependency tree graph. However, they must
be treated in the same way as the previous case (use
split function to confuse untrusted hosts). The rea-

son for using split function is that malicious hosts
may discover the secret function used in our function
composition by carefully looking at the statements
around the assignment. This kind of guessing attack
is easier, if there is only one term to encrypt by se-
cret function, but two or more terms to encrypt will
generate longer and more confusing statements.

The dependency-tree graph can remove the double
encryption problem in the three-address code for our
function composition. However, there is one draw-
back: it is very hard to build a dependency-tree
graph for an original variable, if there is a function
call to a user-defined function, which should be an-
other assumption of our approach; however, simple
function calls for input and output, such as printf
and scanf, do not cause problems.

6 Analysis

This chapter provides in-depth analysis of various
aspects of the components, overall approach, and
possible applications with restrictions. In the com-
ponent analysis, we analyze each component, includ-
ing homomorphic encryption, function composition,
MAE, and the code growth problem. In addition,
we will provide an overall approach analysis of its
weaknesses and strengths.

6.1 Component Analysis - HES

6.1.1 Ring Theory

The homomorphic encryption scheme (HES) used
in our approach is additively, multiplicatively, and
mixed-multiplicatively homomorphic, and is based
on ring theory. By nature, any number sets (inte-
gers) belonging to the ring allow only addition and
multiplication. Another limitation from ring theory
is that the control structures, such as if-statement,
cannot be encrypted using HES, since ring theory
allows only addition and multiplication. The next
limitation is that there are only a few numbering
sets (i.e., integers and integers with modular oper-
ation) that belong to the ring, due to the fact that
there are only two operators defined (addition and
multiplication), which limits the data type to inte-
gers.

14

6.1.2 Encryption

Any sensitive data, such as credit card numbers or
some query information, are encrypted by the HES
that allow the direct computation on encrypted data,
if the computations involve only addition and multi-
plication. Any inputs to the encrypted mobile agent
should be encrypted properly so that the encrypted
mobile agent can perform computations on the en-
crypted inputs.

One of the advantages of our modified cryptosys-
tem is that there is no need to release the encryp-
tion algorithm and the encryption keys. Another
advantage is that the encryption of the input data
from malicious hosts is automatically performed by
mobile agents. A mobile agent includes some addi-
tional statements, which encrypt user input through
a simple multiplication by E(1). This actually re-
quires only four extra lines of three-address code to
encrypt user inputs (i.e., split function call, en-
crypting the first half and second half by E(1), and
adding two encrypted halves). Without using split,
it adds only one or two extra statements, but it may
be possible that malicious hosts can grab our secret
functions by analyzing the surrounding statements
around the input statement (encrypting y = a + b
will give more confusion to malicious hosts than en-
crypting y = a). This encryption is very simple,
and incurs very little overhead, thus yielding faster
encryption performance when compared to normal
encryption schemes that require the encryption al-
gorithm and keys. The last advantage is that since
this type of encryption has little overhead in mobile
agents, these encrypted mobile agents can be used in
an environment where real-time response is required.

6.2 Component Analysis - MAE

MAE grabs three-address codes, and encrypts twice,
first by our HES, and second by our function compo-
sition technique. While encrypting, MAE prevents a
double encryption problem for the HES used in our
approach, by simply building an internal table for all
the variables and temporaries in the three-address
code. This requires MAE to look through each vari-
able and temporary so that MAE can decide which
one to encrypt. This process may cause some delays
in encrypting operands, but this delay can be min-
imized by observing the behavior of compilers such
as LANCE tool. The LANCE tool generates tem-

poraries because of the limitation on the number of
addresses in a three-address codes; there are at most
two operands (i.e., addresses) on the right side. If
a single code line in C language exceeds more than
two addresses (operands), then temporaries are gen-
erated to hold intermediate results. From this ob-
servation, it may be possible to increase the speed
of operand encryption by considering only the orig-
inal variables on the left side of the three-address
code and the constants; the temporaries will hold
the encrypted result of addition and multiplication
between two encrypted operands; thus, there is no
need to encrypt them.

6.3 Component Analysis - FnC

In this sub-section, we analyze the function compo-
sition technique used in our approach.

6.3.1 Code Growth

Our approach intercepts and modifies the interme-
diate code in three-address form twice, and this pro-
cess is expected to increase the size of code. The
first modification will not increase the code size sig-
nificantly, because MAE will replace only the un-
encrypted operands with the encrypted ones. How-
ever, we encrypt certain types of operands of three-
address codes in a different way; these operands are
dynamic inputs from malicious hosts and constant
assignments, which will add some extra statements
to the original three-address codes.

Unlike the first encryption, the second encryption
performed by function composition adds many lines
to the original three-address codes. Encryption by
function composition creates several blocks of en-
crypted codes, depending on the number of origi-
nal variables on the left side of three-address codes.
Dependency-tree graphs created by MAE create sev-
eral blocks of encrypted codes; each block is not
directly related. If an original variable in a pre-
vious block were to be used in some other blocks,
the original variable must be saved in a temporary
variable after the value is encrypted by HES; the
later blocks can use this new temporary to access
the original value, which yields an extra code added
into three-address codes for this purpose. From
each dependency-tree graph created for each original
variable comes an expanded expression, which re-
quires an encryption through a secret function, g(x)

15

(f(x) = g(h(x)), where h(x) is an original code, and
f(x) is an encrypted code.

For the analysis of code growth, we will pick a
worst case from the viewpoint of constant folding,
which is one of many methods of optimizing inter-
mediate codes. The idea of constant folding is sim-
ple: compilers can pre-evaluate an expression while
compiling, if the expression has terms that are com-
posed of constants [1]. This constant folding tech-
nique may pre-evaluate the whole expression, or a
part of an expression, depending on the number of
constants in three-address codes. Although the con-
stant folding can reduce the size of the code by pre-
evaluating three-address codes with constants, it is
also true that this may not work well if there are no
constants at all. Thus, from this fact we pick a worst
case where this constant folding will not work.

The secret function, g(x), plays a key role in in-
creasing the size of the code in the second encryption
phase. Although we have many choices for g(x), a
complicated secret function will greatly increase the
size of code. If our secret function, g(x), has a very
high degree and many terms, it will greatly increase
the size of the code, and give more confusion to ma-
licious hosts. This will allow more time for secure
computing for the encrypted mobile agent. On the
other hand, if g(x) is very simple, then it adds a
lower number of codes to confuse malicious hosts.

We can obtain the upper bound for the size
of encrypted three-address code in the worst case.
Assume that there are k blocks (dependency-tree
graphs), m terms for expanded expressions from
dependency-tree graphs, and the secret function is
g(x) =

∑n
i=0 aix

i. Homomorphic encryption func-
tion does not increase the code, because it encrypts
operands and replaces them in the tree-address code.
Thus, we do not need to consider our HES, but
function composition. The expected number of en-
crypted statements for one expanded expression will
be

∑n
i=0 aim

i in the worst case. Since there are
k dependency-tree graphs, the upper bound in the
worst case is k

∑n
i=0 aim

i. This function is an upper
bound for code growth, which does not include the
variable declarations.

Even though the function composition greatly in-
crease the code, there is still a chance to reduce the
code size by grouping the same terms. For example,
from (a+b)3 = a3+a2b+a2b+a2b+ab2+ab2+ab2+b3,
we can group the same terms together to obtain

a3 +3a2b+3ab2 +b3. After this reduction, MAE can
randomly perform multiplications for each term, and
additions for the given expression. There are many
other ways to reduce the size of code such as constant
folding, which we will discuss in the next section.

6.3.2 Optimization

Usually, compilers have an extra step after an inter-
mediate form of code is generated; one of extra steps
is for the optimization on intermediate codes. There
are many ways of optimizations: constant folding,
common subexpression removal, copy propagation,
variable renaming, and dead code elimination [1].
The main goal of function composition used in our
approach is scrambling code so that mobile agents
can earn time for secure computing. Although our
function composition technique increases the size of
code, it is possible that some of the code growth
problems can be eliminated by using compiler opti-
mization techniques.

We have tried to find a mathematical model that
shows the difference in the code size between unop-
timized codes and optimized codes; however, due to
the random behavior of our encryption scheme (func-
tion composition), it was very difficult to find such
a mathematical model. As our example indicates,
the randomness of function composition (i.e., the
random ordering of additions and multiplications)
can limit the possible optimization techniques, and
the range of optimizations. Even though all the op-
timization techniques may fail to reduce the code
size in the worst case, there still is one optimiza-
tion technique that can always reduce the size of
code. The process of simplifying terms can reduce
the code size and this will always work. MAE per-
forms this term simplification while encrypting the
three-address code with the function composition.
However, this does not help to find a mathematical
model that best expresses the size of codes between
optimized and unoptimized codes due to the fact
that the number of terms in expanded expression,
m is variable in k

∑n
i=0 aim

i (the size of encrypted
code), where k is for the number of dependency-tree
graph, and m for the number of terms in expanded
expressions.

16

6.4 Security Analysis

In this sub-section we provide security analysis for
our approach; we discuss the security of each com-
ponent.

6.4.1 HES

Sander and Tschudin paved the way for mobile cryp-
tography with one big limitation that there is no
HES available for their mobile cryptography today.
However, it turned out that it is not true, and there
is a simple homomorphic encryption scheme. Fer-
rer and Joancomart́ı proposed an additive and mul-
tiplicative homomorphic encryption scheme. Our
modified cryptosystem from the original one (Fer-
rer and Joancomart́ı cryptosystem) may not be per-
fectly secure, but there exists at least one additive,
multiplicative and mixed-multiplicative homomor-
phic encryption scheme, and we can use this to ex-
tend, find or create a more secure one. Ferrer and
Joancomart́ı discussed about the security of their
cryptosystem. Since our modified version is a down-
graded version and still shares many properties with
the original version, we can use their arguments on
the security analysis for our modified cryptosystem.

Ciphertext-Only Attack The cryptanalyst does
not need p to find a number A ∈ Qn correspond-
ing to a ciphertext y ∈ Zn. However, p is needed
to compute a mod p = x. But, if the cryptana-
lyst sees only ciphertext, then finding the secret
p from the public n is as difficult as factoring
n [2].

Known-Plaintext Attack If the cryptanalyst
knows a plaintext-ciphertext pair (x, y), then
the cryptanalyst can generate a set of the n
numbers of Ai ∈ Qn for i = 1, · · · , n such that
Ai = y mod n. Then, the cryptanalyst knows
that Ai = x mod p so that p | (Ai − x) for all
i = 1, · · · , n.

The known-plaintext attack analysis implies that
the modified cryptosystem as well as the original
one are not perfectly secure. It is possible that our
modified cryptosystem can be broken with a time-
consuming effort; however, we can prevent this at-
tack by modifying the assumption. If malicious hosts
know n, then they can perform the known-plaintext
attack as described above. However, if we keep n

and p secret, this known-plaintext attack can be pre-
vented. Since, the encryption code is already in-
cluded in the encrypted mobile agents, the agent
owner does not need to release the secret keys in-
cluding n, and the encryption algorithm.

6.4.2 Function Composition (FnC)

For better security, we can change the secret function
for each different mobile agent, which implies that a
compromised secret function does not decrypt other
mobile agents. Even though a compromised secret
function can decrypt other mobile agents (i.e., break-
ing only composite function), the malicious hosts
still need secret keys for HES to decrypt sensitive
data.

Another security issue that we should consider is
how secure HES is. One thing quite sure is that
a secret function with high degree and many terms
will confuse untrusted hosts more than the one with
low degree and less terms. Unfortunately, there is
no guide-line in selecting a good secret function, but
very complicated secret functions will hide many de-
tails of mobile agents from untrusted hosts while in-
creasing the size of code. The weak (too simple)
secret functions will provide faster performance, but
less secure than the complicated ones in general.

One form of attacks to the function composition
is decomposition attack to composite functions by
malicious hosts. However, interestingly there is al-
ready a result on the hardness of decomposing a ra-
tional function (rational function is the quotient of
two polynomial functions). According to Sander and
Tschudin, Zippel argued that there is no polynomial
time algorithm for decomposing multivariate ratio-
nal functions [11, 16].

6.5 Strengths

Our approach can do many things that were not pos-
sible by many previously proposed approaches. It is
an extension and implementation of mobile cryptog-
raphy proposed by Sander and Tschudin [11, 13, 12].
Although they first proposed it, they did not suggest
any practical idea of implementation; this is because
they could not find or make an additive, multiplica-
tive and mixed-multiplicative homomorphic encryp-
tion scheme to use in their idea.

One of the strengths of our approach is that ours
allows encrypted agents to run without decryption.

17

The decryption of the encrypted result is exactly the
reverse of the encryption; apply the inverse of the
encrypting function first, and use the secret key of
the HES to recover the actual result.

Another strength is that the encryption of inputs
from malicious hosts is done automatically without
the need for separate encryptions which cause the in-
terruption of execution. The mixed-multiplicativity
property of homomorphic encryption scheme (HES)
in our approach encodes the encryption routine in-
side mobile agents for continuous computation. Ad-
ditionally, the encryption time for each input is min-
imal, since it requires only a few lines of code with
simple operations such as addition and multiplica-
tion; it calls a function, split, to randomly split an
input, multiplies E(1) to each half, and adds each
encrypted half.

The next strength is that our approach is safe from
many privacy attacks. We can consider two types
of attacks: attacks on code, and on data. The ho-
momorphic encryption scheme of our approach pro-
tects data from attacks. The data in this context
refers to any sensitive data such as credit card infor-
mation, personal information, and any other impor-
tant information that are very critical for decision
making. The code privacy is obtained through our
function composition. The code is segmented into
several blocks through function composition, and
none of the blocks depends on others for its exe-
cution, which causes confusion to malicious hosts.
The three-address code is rewritten by our function
composition technique to include some extra codes
to confuse malicious hosts.

Another strength is that this approach prevents
integrity attacks, which are of two types: attacks on
code, and on data, including state information. The
homomorphic encryption scheme, and the function
composition technique used in our approach can pre-
vent attacks on data including state information for
mobile agents. Malicious hosts should have a clear
idea of which variable or data to change to make a
successful integrity attack (to change the decision so
that it brings benefits to malicious hosts). For exam-
ple, a malicious host wants to modify a mobile agent
so that this mobile agent can be tricked into buying
flowers from the malicious host. This requires the
malicious host to know which data to change and
where the data is located in the mobile agent. Our

HES prevents malicious hosts knowing the value of
a variable, because it is encrypted by HES.

Another strength can be found in the fact that we
are extending Sander and Tschudin’s idea of mobile
cryptography, which has only an imaginary homo-
morphic encryption scheme with no actual encryp-
tion scheme. Furthermore, it limits the computation
to some limited classes of mathematical functions
(polynomial functions). However, our approach sug-
gests a practical way of implementing the idea of
mobile cryptography, and it is not limited to some
mathematical functions; it can be applied to gen-
eral functions within the limits of assumptions that
stems from the property of ring theory.

The last strength is that our approach can pro-
tect the results from integrity and privacy attacks.
From the definition of the homomorphic encryption
scheme and function composition, it is very clear
that the result generated from an encrypted mobile
agent is automatically encrypted. This requires a
decryption process for agent owners, but agent own-
ers can expect the very same level of security for the
results as identical to that of the encrypted mobile
agent.

6.6 Weaknesses and Limitations

Our new approach can provide a range of security
coverage broader than other security approaches for
mobile agents; however, it does not provide perfect
protection. We will discuss this in this section.

One of the biggest weaknesses is the code growth
problem. As discussed already, our homomorphic
encryption scheme adds a few extra codes for inputs
from malicious hosts; furthermore, the FnC increases
the size of the code. Although the size of the code
is increased, the computing time will not increase
proportionally, due to the fact that our homomor-
phism limits the possible operations to computation-
ally cheap ones, such as addition and multiplication.
There are also some compiler optimization schemes
that we can use to reduce the size of the encrypted
codes. There is no fixed mathematical expression or
equation that best expresses the code growth and
code reduction in our approach. This weakness will
limit the application of our approach to the encryp-
tion of those functions that process sensitive data,
while the rest of the program or mobile agent is left
unencrypted. However, for a small mobile agent or

18

program, we can encrypt the whole code, data, and
state information.

Another weakness of our approach is that the
types of possible function calls in the encrypted func-
tion are somewhat limited. Basic input and output
functions (scanf and printf) can be called without
problems from encrypted functions or mobile agents.
However, encrypted mobile agents or functions may
have problems, if the encrypted mobile agents or
functions try to call user-defined functions, or some
other functions from a language library. For exam-
ple, a user-defined function that generates a certain
value (a hash value) from a function parameter may
not work properly, as there is no guarantee that the
hash value is correctly generated. However, this
does not imply that all the user-defined functions
cannot be called from an encrypted function. We
believe that many user-defined functions and other
pre-defined functions can be rewritten, or redefined
carefully.

Another weakness is that there are some integrity
attacks that cannot be tolerated by our approach.
Our approach prevents integrity attacks if those at-
tacks require some pre-analysis of code and data. For
example, malicious hosts cannot change a decision
making variable to trick mobile agents to take an ac-
tion that benefits malicious hosts, because malicious
hosts cannot know the values or decisions stored in
the decision making variable. However, like many
other security approaches, our approach is vulnera-
ble to blind integrity attacks, which means that ma-
licious hosts modify any parts of codes or data; this
is a form of denial of service attack.

The next weakness can be found in the fact
that our approach uses a homomorphic encryption
scheme based on ring theory. This means that the
possible types of operators are limited to addition
and multiplication. In addition, it limits the data
we can work on to integers modulo n. Furthermore,
control structures in three-address code are not in-
cluded in our approach.

Unlike some mobile agent security approaches
such as PRAC [15], there is no mechanism for the
detection of any modifications made to encrypted
mobile agents and their results. Our approach does
not provide complete protection against integrity at-
tacks; thus it may be possible for a malicious host to
modify an encrypted mobile agent, which would not
crash, but would instead generate a wrong result.

Some lucky integrity attacks, such as the one just
mentioned, could go undetected, although the re-
sult would be incorrect and would mislead the agent
owner.

In general, our approach suggests a practical idea
of implementing mobile cryptography on a three-
address code, with some limitations as explained in
this section. From the limitations of our approach,
we can summarize its possible applications: we can
suggest that our approach could be used for mobile
codes or programs that require integrity and privacy
on code, data, and result. Our approach could also
be used to encrypt functions, rather than the whole
program, due to the code growth problem, unless
the program is small. Unlike Sander and Tschudin’s
approach, the application of our approach is not lim-
ited to some mathematical classes of functions, but
to general classes of functions.

7 Conclusion

In this paper, we have tried to address the problem
of protecting mobile agents from untrusted hosts by
proposing a new security approach which extends
the idea of mobile cryptography originally proposed
by Sander and Tschudin [13, 12]. Protecting mo-
bile agents from malicious hosts is very hard due to
the fact that hosts have complete control over any
programs. We have reviewed many good approaches;
however, they were somewhat less secure than we de-
sire and do not provide both privacy and integrity to
mobile agents and results. Sander and Tschudin ar-
gued that a homomorphic encryption scheme can en-
crypt a function, that the encrypted function can be
evaluated without decryption, and that the result is
automatically encrypted. Although there are many
advantages of this approach, no practical method
was proposed to implement this mobile cryptogra-
phy. This is because Sander and Tschudin limited
their proof to the use of additive, multiplicative,
and mixed-multiplicative homomorphism to encrypt
a few classes of mathematical functions, under the
assumption that there exists homomorphic encryp-
tion scheme (they pointed out that they had found
no such homomorphic encryption scheme exists as
yet).

Our work, extending Sander and Tschudin’s idea,
provides an approach to implementing mobile cryp-
tography. Our approach is a hybrid one, mixing a

19

homomorphic encryption scheme and function com-
position through which we can prevent privacy and
integrity attacks on mobile agents and results. Even
though our approach provides broader protections
than other approaches, some attacks still cannot
be prevented. This approach also has some limi-
tations stemming from the organizing components
such as ring theory basis of our homomorphic en-
cryption scheme. However, our work still contributes
to mobile agent security by solving some of the se-
curity problems that have been studied by many re-
searchers. The summary of the specific contributions
of this work are:

1. We proposed a practical method of implement-
ing mobile cryptography by extending Sander
and Tschudin’s idea.

2. We developed a homomorphic encryption
scheme, which is additively, multiplicatively,
and mixed-multiplicatively homomorphic. The
biggest problem of Sander and Tschudin’s ap-
proach was that there have been no published
homomorphic encryption schemes to use in mo-
bile cryptography.

3. Our approach is not limited to a few mathemat-
ical classes of functions.

4. Our work allows the direct evaluation of en-
crypted mobile agents without any decryption.

5. The result generated from encrypted mobile
agents are automatically encrypted, and only
the agent owner can decrypt it.

6. It prevents many types of privacy attacks.

7. It prevents many integrity attacks, although
it cannot prevent blind modification attacks,
which are a type of denial of service.

8. Results from encrypted mobile agents have the
same level of security protections as the mobile
agents

In conclusion, this research work is an attempt
to provide a broader range of protection for mobile
agents, and it is hoped that this work can serve as a
small contribution to the security of mobile agents.

8 Future Work

In this paper we proposed a hybrid approach, which
is a combination of HES and FnC, and argued that
ours can provide broader range of protection to mo-
bile agents. However, there are some limitations and
assumptions in our approach, which restrict the ap-
plication of our approach and require further study.
We discuss some of the future works that must be
given considerations for the improvement of our ap-
proach as follows:

• Our modified encryption scheme is additive,
multiplicative and mixed-multiplicative homo-
morphic encryption scheme. It is a simple
cryptosystem, and requires extra work to de-
velop more sophisticated encryption schemes
with complete security analysis.

• Due to the assumption of ring theory, the possi-
ble operators are restricted to addition and mul-
tiplication only. If we can move up to field, we
can add two more operators such as subtraction
and division.

• The number sets that we are dealing with in our
approach is integers, because of the assumption
of ring theory. The number sets should be ex-
tended to some other types of numbering sys-
tems such as real numbers.

• The types of function calls within an encrypted
function or mobile agent is limited to some
primitive ones such as basic input and output.
More study is required to find a way of calling
user-defined and system functions within an en-
crypted mobile agent.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers, Principles, Techniques, and
Tools, pages 462–512. Addison-Wesley, 1988.

[2] J. Domingo Ferrer and J. Herrera-́ı Joancomat.
A privacy homomorphism allowing field opera-
tions on encrypted data. Jornades de Matem-
atica Discreta i Algorsmica, 1998.

[3] Joshua D. Guttman and Vipin Swarup. Au-
thentication for mobile agents. In LNCS, pages
114–136. Springer, 1998.

20

[4] Neeran Karnik. Security in Mobile Agent Sys-
tems. PhD thesis, Department of Computer Sci-
ence and Engineering. University of Minnesota,
1998.

[5] Chandra Krintz. Security in agent-based com-
puting environments using existing tools. Tech-
nical report, University of California, San
Diego, 1998.

[6] Rainer Leupers. Lance: A compiler plat-
form for embedded processors. Embedded Sys-
tems/Embedded Intelligence, 2001.

[7] Rainer Leupers. The lance v2.0, c com-
piler system. http://ls12-www.cs.uni-
dortmund.de/lance/, 2001.

[8] Lars Rasmusson and Sverker Jansson. Sim-
ulated social control for secure Internet com-
merce. In Workshop on New Security
Paradigms, pages 18–26, Lake Arrowhead, CA,
September 1996.

[9] James Riordan and Bruce Schneier. Environ-
mental key generation towards clueless agents.
Lecture Notes in Computer Science, 1419:15–
24, 1998.

[10] R. Rivest, L. Adleman, and M. Dertouzos. On
data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–
178, 1978.

[11] Tomas Sander and Christian Tschudin. To-
wards mobile cryptography. Technical re-
port, International Computer Science Institute,
Berkeley, 1997.

[12] Tomas Sander and Christian F. Tschudin. On
software protection via function hiding. In In-
formation Hiding, pages 111–123, 1998.

[13] Tomas Sander and Christian F. Tschudin. Pro-
tecting Mobile Agents Against Malicious Hosts.
In Giovanni Vigna, editor, Mobile Agent Secu-
rity, pages 44–60. Springer-Verlag: Heidelberg,
Germany, 1998.

[14] Bennet Yee. Using Secure Coprocessors. PhD
thesis, Carnegie Mellon University, 1994.

[15] Bennet Yee. A sanctuary for mobile agents. In
DARPA Workshop on Foundations for Secure
Mobile Code Workshop, March 1997.

[16] Richard E. Zippel. Rational function decompo-
sition. In In Proceedings of the International
Symposium on Symbolic and algebraic Compu-
tation, July 1991.

21

